CGN Comprehensive Cooperation Proposal on Nuclear Power Plant Construction in Poland (HPR1000)

Kuang Yanjun
Oct. 2018 in Poland
Table of Contents

1. CGN Overviews
2. HPR1000 Technology
3. Welding Technology in HPR1000
4. Proposal and Suggestion
CGN Overviews
CGN

Who are we?

• A leading clean energy provider and server in the world.

• The largest nuclear power enterprise in China, and the third one in the world, with totally installed capacity of 45GWe.

• The largest Nuclear Power constructor in the world, independently developed HPR1000 – Chinese advanced Gen–III nuclear power technology.

• Total asset 100bn $, 40,000 Employees.
Business

“4+X” sectors

Nuclear Power New Energy Nuclear Fuel Finance X (Nuclear technology …)

3 HK stock listed subsidiaries, 1 A stock subsidiary

CGN Power 1816.HK CGN New Energy 1811.HK CGN Mining 1164.HK CGN Technology 000881.SZ
Achievement in Nuclear Power Plant

Daya bay
2×984MW

Ling’ao NPP phase 1
2×990MW
Ling’ao NPP phase 2
2×1087MW

Taishan NPP
2×1750MW

Hongyanhe NPP phase 1
4×1119MW
Hongyanhe NPP phase 2
2×1119MW

FCG NPP phase 1
2×1086MW
FCG NPP phase 2
2×1180MW

Yangjiang NPP
6×1086MW

Ningde NPP phase 1
4×1089MW

7 units under construction, 21 units in operation
Localization

- More than 30 years experience of NPP localization
- Localization ratio growing from 1% to 100%
02

HPR1000 Technology
Feature

Safe
- Enhanced emergency power & cooling ability based on feedback of Fukushima Accident;
- Combination of active and passive safety systems;
- Complete severe accidents prevention and mitigation measures;

Economic
- Build-up cost is competitive in the similar type of NPPs;
- Taking advantage of China’s batch construction of NPP;

Proven and Approved
- Proven design technology, suitable for existing industry system;
- Demo plant, FCG units 3 &4, to be put into Commercial Operation in 2020;
- GDA & EUR assessment
Key Parameters

<table>
<thead>
<tr>
<th>Items</th>
<th>HPR1000</th>
<th>URD</th>
<th>EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF (Core Damage Frequency), / (reactor·year)</td>
<td>6.9×10^{-7}</td>
<td>$< 1 \times 10^{-5}$</td>
<td>$< 1 \times 10^{-5}$</td>
</tr>
<tr>
<td>LRF (Large Radioactive Release Frequency), / (reactor·year)</td>
<td>7.3×10^{-8}</td>
<td>$< 1 \times 10^{-6}$</td>
<td>$< 1 \times 10^{-6}$</td>
</tr>
<tr>
<td>Fuel Thermal Margin</td>
<td>$> 15%$</td>
<td>$> 15%$</td>
<td>$> 15%$</td>
</tr>
<tr>
<td>Design availability Factor</td>
<td>92%</td>
<td>$\geq 87%$</td>
<td>$\geq 90%$</td>
</tr>
<tr>
<td>Safe shutdown earthquake</td>
<td>0.3g</td>
<td>0.3g</td>
<td>0.25g</td>
</tr>
<tr>
<td>Operator grace time</td>
<td>≥ 30 min</td>
<td>≥ 30 min</td>
<td>≥ 30 min</td>
</tr>
<tr>
<td>Solid waste, m3/ (year·unit)</td>
<td>< 50</td>
<td>< 50</td>
<td>< 50</td>
</tr>
<tr>
<td>Design lifetime, year</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
Technical Description

Three trains

- Three independent trains of safety systems, physically separated;
- 3X100% redundant;
- CDF decreased compared with the traditional 2 trains system;
- Better resistance to internal and external hazards.
Technical Description

177 Fuel Assemblies

- 177 Fuel Assemblies (12 ft);
- Fuel thermal margin >15%;
- Lower linear power density;
- Higher core thermal power;
Passive

Secondary Passive Residual Heat Removal System

Ensuring long-term cooling of plant by natural circulation in case all active system disabled.

Passive Reactor Cavity Injection System (IVR)

Ensuring cooling of In-Vessel Retention during severe accidents.
HPR1000 in the world

- Batch construction in China domestic
- 2 units under construction in Pakistan
- To be constructed in British.
Welding Technology in HPR1000
Welding Technology

For the quality, cost and schedule consideration, HPR1000 has taken many technologies for plant construction, such as:

- Modular structures.
- Automatic welding of significant piping and stainless steel lining.
- Prefabrication for equipment and piping system.
Welding Technology

For each welding technology, the main work include:

- Quality control management of welding.
- WPS and WPQ management.
- Welder training and certificate.
- Sub-contractor management.
- NDT technology.

CGN has rich experience of NI&CI installation on site.

CGN has plenty of suppliers in China for fabrication and installation.
Harmonized Standards

Code and Standards for HPR1000

• The fabrication and installation of the most component is carried out according to RCCM Code.
• The pre-service inspection (PSI) and in-service inspection (ISI) is executed according to RSEM Code.
• The most supporting standards of RCCM and RSEM code are EN or ISO standards, few of them are NF standards or ASME/ASTM/AWS standards.

Advantages

• The related organizations (Owner, regulator, supplier, etc.) could prepare themselves in a very short time and join the work of HPR1000 construction due to the favorable code and standards.
• The potential enterprises in Poland or EU for manufacturing equipment and products as well as rendering services could join the chain of the qualified suppliers.
Harmonized Standards

<table>
<thead>
<tr>
<th>Items</th>
<th>Typical Standard for nuclear components fabrication and installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing</td>
<td>ISO9016(impact test), ISO4136(tensile test), ISO5173(bend test),</td>
</tr>
<tr>
<td></td>
<td>ISO9015(hardness test), ISO17639(macroscopic and microscopic test)</td>
</tr>
<tr>
<td>Welding consumables</td>
<td>Carbon steel: EN ISO 2560, AWS A5.1, A5.18, A5.17, A5.20;</td>
</tr>
<tr>
<td></td>
<td>Low alloy steel: AWS A5.5, AWS A5.23;</td>
</tr>
<tr>
<td></td>
<td>Stainless steel: EN12072/AWS A5.9; EN1600/AWS A5.4; EN12072/AWS A5.9</td>
</tr>
<tr>
<td></td>
<td>Nickel based alloy: AWS A5.14/5.11</td>
</tr>
<tr>
<td>Welding procedure</td>
<td>EN ISO 15609</td>
</tr>
<tr>
<td>specifications</td>
<td>.EN ISO 15614</td>
</tr>
<tr>
<td>Welder qualification</td>
<td>EN ISO9606 (manual, semi-mechanical/automatic)</td>
</tr>
<tr>
<td></td>
<td>ISO14732 (fully mechanical & automatic)</td>
</tr>
<tr>
<td>Non destructive</td>
<td>ISO 3452(PT), ISO17637(VT), ISO 17638(MT);</td>
</tr>
<tr>
<td>testing (NDT)</td>
<td>ISO17636(RT), ISO17640(UT)</td>
</tr>
<tr>
<td>NDT qualification</td>
<td>EN473/EN ISO 9712</td>
</tr>
</tbody>
</table>
Welding of CI & BOP

<table>
<thead>
<tr>
<th>Items</th>
<th>Typical Standard for piping system and components installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical material types</td>
<td>Carbon steel and casting with C%≤0.35%(GB/T 700, GB/T 711, NB/T 47008); Carbon-Manganese steel(GB/T 713, GB/T 1591, GB/T 1502); Manganese-Vanadium steel(GB/T 1591); Chrome-Molybdenum steel(GB/T 713, GB/T 5310)</td>
</tr>
<tr>
<td>Welding procedure</td>
<td>DL/T 752-2010 The code of the welding on dissimilar steel for power plant</td>
</tr>
<tr>
<td>specifications</td>
<td>DL/T 869-2012 The code of welding for power plant</td>
</tr>
<tr>
<td>Welding procedure</td>
<td>DL/T 868-2014 Qualification standard for welding procedures</td>
</tr>
<tr>
<td>qualification</td>
<td>TSG Z6002-2010 Examination rules for welding operators of special equipment</td>
</tr>
<tr>
<td>Welder qualification</td>
<td>DL/T 679-2012 Code for welder technical qualification</td>
</tr>
<tr>
<td>Non destructive testing(NDT)</td>
<td>NB/T 47013-2015 Nondestructive testing of pressure equipment</td>
</tr>
</tbody>
</table>

These Chinese national and industry standards are also applicable for thermal power station, which can be replaced by local harmonized standards.
Special Requirements

ESPN / PED /CE Marking

- The design, manufacture, conformity assessment and the installation operation of Nuclear Pressure Equipment shall be performed according to ESPN Orders.
- The design, manufacture, conformity assessment of Pressure Equipment shall be performed according to PED.
- CE Marking of the HPR1000 equipment or product.

Agreed Notified Body (ANB)

- For approval and monitoring of the manufacturer’s quality assurance system or for direct product inspection.
- In charge of the conformity assessment of the nuclear Pressure Equipment.
- ANB agreed by the regulator.
- Certification approved by ANB of sub-contractor.
Proposal and Suggestion
□ CGN’s Proposal in Polish Nuclear project

• Provide the proven, approved and practically realistic technology HPR1000 with its latest modifications.

• Enhanced quality, cost and schedule control to achieve a competitive power price, with the benefit from batch construction of HPR1000 in the world.

• Comprehensive cooperation with local industrial chain, including engineering, manufacture, construction and technical service, to maximize localization ratio up to 40%.

• Take advantage of Chinese investing and financing.

• Make the best of CGN’s experience in NPP construction and operation, as well as Chinese regulatory and surveillance system.
Options of Participants

- Suppliers: Provide equipment, products or service for HPR1000 by themselves.
- Sub-suppliers: Provide equipment, products or service for HPR1000 under the cooperation with CGN or Chinese supplier.
- Rendering companies: Provide technical personals or engineers.
- Certification service: Provide PED certification for Chinese suppliers.

Some Suppliers in EU or Poland for NPP Construction in China

- Supplier of welding consumables and base metal: ESAB, Sandvick, Bohler, Air Liquid, METRODE; Outokumpu, Creusot Forge, Valinox Nucléaire, CEFIVAL……
Suggestion

• It is suggested for supply chain that some necessary work, such as licensing, certificating, and employee training, should be commenced as early as possible.

• CGN is willing to share our experience in construction and operation of nuclear power plants with Polish counterparts.
THANK YOU

You can contact this email if any question
kuangyanjun@cgnpc.com.cn